Регулируемый блок питания из atx. Устройство компьютерных блоков питания и методика их тестирования

Основа современного бизнеса - получение больших прибылей при сравнительно низких вложениях. Хотя этот путь и губителен для собственных отечественных разработок и промышленности, но бизнес есть бизнес. Тут либо вводи меры по предотвращению проникновения дешевых запцацак, либо делать на этом деньги. К примеру, если необходим дешевый блок питания, то не нужно изобретать и конструировать, убивая деньги, - просто нужно посмотреть на рынок распространенного китайского барахла и попытаться на его основе построить то, что необходимо. Рынок, как никогда, завален старыми и новыми компьютерными блока питания различной мощности. В этом блоке питания есть все что нужно - различные напряжения (+12 В, +5 В, +3,3 В, -12 В, -5 В), защиты этих напряжений от перенапряжения и от превышения тока. При этом компьютерные блоки питания типа ATX или TX имеют малый вес и небольшой размер. Конечно, блоки питания импульсные, но высокочастотных помех практически нет. При этом можно идти штатным проверенным способом и ставить обычный трансформатор с несколькими отводами и кучей диодных мостов, а регулирование осуществлять переменным резистором большой мощности. С точки зрения надежности трансформаторные блоки намного надежнее импульсных, ведь в импульсном блоки питания в несколько десятков раз больше деталей, чем в трансформаторном блоке питания типа СССР и если каждый элемент по надежности несколько меньше единицы, то общая надежность является произведением всех элементов и как результат - импульсные блоки питания по надежности намного меньше трансформаторных в несколько десятков раз. Кажется, что если так, то нечего городить огород и следует отказаться от импульсных блоков питания. Но тут более важным фактором, чем надежность, в нашей действительности является гибкость производства, а импульсные блоки достаточно просто могут трансформироваться и перестраиваться под совершенно любую технику в зависимости от требований производства. Вторым фактором является торговля запцацками. При достаточном уровне конкуренции производитель стремится отдать товар по себестоимости, при этом достаточно точно рассчитать время гарантии с тем, чтобы оборудование выходило из строя на следующей неделе, после окончания гарантии и клиент покупал бы запчасти по завышенным ценам. Порой доходит до того, что легче купить новую технику, чем чинить у производителя его бэушку.

Для нас вполне нормально вместо сгоревшего блока питания вкрутить транс или подпереть красную кнопку пуска газа в духовках "Дефект" столовой ложкой, а не покупать новую часть. Наш менталитет четко просекают китайцы и стремятся делать свои товары неремонтопригодными, но мы как на войне, умудряемся ремонтировать и усовершенствовать их ненадежную технику, а если уже все - "труба", то хоть какую-нить запцацку снять и вкидануть в другое оборудование.

Мне стал нужен блок питания для проверки электронных компонентов с регулируемым напряжением до 30 В. Был трансформатор, но регулировать через резак - несерьезно, да и вольтаж будет плавать на разных токах, а вот был старенький блоки питания ATX от компа. Зародилась идея приспособить комповский блок под регулируемый источник питания. Прогуглив тему, нашел несколько переделок, но все они предлагали радикально выкинуть всю защиту и фильтры, а мы бы хотелось сохранить весь блок на случай, если придется использовать его по прямому назначению. Поэтому я начал эксперименты. Цель - не вырезая начинку создать регулируемый блок питания с пределами изменения напряжений от 0 до 30 В.

Часть 1. Так себе.

Блок для опытов попался достаточно старый, слабый, но напичканный множеством фильтров. Блок был в пыли и поэтому перед запуском я его вскрыл и почистил. Вид деталей подозрений не вызвал. Раз все устраивает - можно делать пробный пуск и измерить все напряжения.

12 В - желтый

5 В - красный

3,3 В - оранжевый

5 В - белый

12 В - синий

0 - черный

По входу блока стоит предохранитель, а рядом напечатан тип блока LC16161D.

Блок типа ATX имеет разъем для подсоединения его к материнской плате. Простое включение блока в розетку не включает сам блок. Материнская плата замыкает два контакта на разъеме. Если их замкнуть - блок включится и вентилятор - индикатор включения - начнет вращение. Цвет проводов, которые нужно замыкать для включения, указан на крышке блока, но обычно это "черный" и "зеленый". Нужно вставить перемычку и включить блок в розетку. Если убрать перемычку блок отключится.

Блок TX включается от кнопки, которая находится на кабеле, выходящем из блока питания.

Понятно, что блок рабочий и прежде чем начать переделку, нужно выпаять предохранитель, стоящий по входу, и впаять вместо него патрон с лампочкой накаливания. Чем больше по мощности лампа, тем меньше напряжения будет на ней падать при тестах. Лампа защитит блок питания от всех перегрузок и пробоев и не даст выгореть элементам. При этом импульсные блоки практически нечувствительны к падению напряжения в питающей сети, т.е. лампа хоть и будет светить и кушать киловатты, но по выходным напряжениям просадки от лампы не будет. Лампа у меня на 220 В, 300 Вт.

Блоки строятся на управляющей микросхеме TL494 или ее аналог KA7500 . Также часто используется компоратор на микрухе LM339 . Вся обвязка приходит сюда и именно здесь придется делать основные изменения.

Напряжения в норме, блок рабочий. Приступаем к усовершенствованию блока по регулированию напряжений. Блок импульсный и регулирование происходит за счет регулирования длительности открытия входных транзисторов. Кстати, всегда думал, что колебают всю нагрузку полевые транзисторы, но, на самом деле, используются также быстрые переключающиеся биполярные транзисторы типа 13007, которые устанавливаются и в энергосберегающих лампах. В схеме блока питания нужно найти резистор между 1 ножкой микросхемы TL494 и шиной питания +12 В. В данной схеме он обозначается R34 = 39,2 кОм. Рядом установлен резистор R33 = 9 кОм, который связывает шину +5 В и 1 ножку микросхемы TL494. Замена резистора R33 ни к чему не приводит. Нужно заменить резистор R34 переменным резистором 40 кОм, можно и больше, но поднять напряжение по шине +12 В получилось только до уровня +15 В, поэтому в завышении сопротивления резистора смысла нет. Здесь идея в том, что чем выше сопротивление, тем выше выходное напряжение. При этом до бесконечности напряжение не увеличится. Напряжение между шинами +12 В и -12 В изменяется от 5 до 28 В.

Найти нужный резистор можно проследив дорожки по плате, либо при помощи омметра.

Выставляем переменный впаянный резистор в минимальное сопротивление и обязательно подключаем вольтметр. Без вольтметра тяжело определить изменение напряжений. Включаем блок и на вольтметре на шине +12 В установилось напряжение 2,5 В, при этом вентилятор не крутится, а блок питания немного поет на высокой частоте, что указывает на работу ШИМ на сравнительно небольшой частоте. Крутим переменный резистор и видим увеличение напряжений на всех шинах. Вентилятор включается примерно на +5 В.

Замеряем все напряжения по шинам

12 В: +2,5 ... +13,5

5 В: +1,1 ... +5,7

3,3 В: +0,8 ... 3,5

12 В: -2,1 ... -13

5 В: -0,3 ... -5,7

Напряжения в норме, кроме шины -12 В, и их можно варьировать для получения необходимых напряжений. Но компьютерные блоки сделаны так, чтобы по отрицательным шинам защита срабатывала при достаточно малых токах. Можно взять автомобильную лампочку на 12 В и включить между шиной +12 В и шиной 0. При увеличении напряжения лампочка станет светить все более ярко. При этом постепенно будет светить и лампа, включенная вместо предохранителя. Если включить лампочку между шиной -12 В и шиной 0, то при малом напряжении лампочка светится, но при определенном токе потребления блок уйдет в защиту. Защита срабатывает на ток порядка 0,3 А. Защита по току выполнена на резистивно-диодном делителе, чтобы его обмануть, нужно отключить диод между шиной -5 В и средней точкой, которая соединяет шину -12 В с резистором. Можно обрубить два стабилитрона ZD1 и ZD2. Стабилитроны применены как защита от перенапряжения и конкретно здесь через стабилитрон идет и защита по току. По крайней мере с шины - 12 В удалось взять 8 А, но это чревато пробоем микрухи обратной связи. В итоге путь тупиковый обрубать стабилитроны, а вот диод - вполне.

Для проверки блока нужно использовать переменную нагрузку. Наиболее рациональным является кусок спирали от нагревателя. Витой нихром - вот все что нужно. Для проверки включается нихром через амперметр между выводом -12 В и +12 В, регулируем напряжение и измеряем ток.

Выходные диоды для отрицательных напряжений значительно меньше тех, которые используются для положительных напряжений. Нагрузка соответственно также ниже. Более того, если в положительных каналах стоят сборки из диодов Шоттки, то в отрицательных каналах впаян обычный диод. Порой его припаивают к пластинке - типа радиатор, но это бред и для того чтобы поднять ток в канале -12 В нужно заменить диод, на что-то более сильное, но при этом сборки из диодов Шоттки у меня сгорели, а вот обычные диоды вполне неплохо тянули. Следует отметить, что защита не срабатывает, если нагрузка включена между разными шинами без шины 0.

Последним тестом является защита от короткого замыкания. Коротим накоротко блок. Защита работает только на шине +12 В, ведь стабилитроны отключили практически всю защиту. Все остальные шины по короткому не отключают блок. В итоге получен регулируемый блок питания из компьютерного блока с заменой одного элемента. Быстро, а значит экономически целесообразно. При тестах выяснилось, что если быстро крутить ручку регулировки, то ШИМ не успевает перестроиться и выбивает микруху обратной связи KA5H0165R , а лампа загорается очень ярко, затем входные силовые биполюсные транзисторы KSE13007 могут вылететь, если вместо лампы предохранитель.

Короче, все работает, но достаточно ненадежно. В таком виде нужно использовать только регулируемую шину +12 В и неинтересно медленно крутить ШИМ.

Часть 2. Более-менее.

Вторым экспериментом стал древнющий блок питания TX. Такой блок имеет кнопочку для включения - достаточно удобно. Переделку начинаем с перепайки резистора между +12 В и первой ножкой микрухи TL494. Резистор от +12 В и 1 ножкой ставится переменный на 40 кОм. Это дает возможность получить регулируемые напряжения. Все защиты остаются.

Далее нужно изменить пределы тока для отрицательных шин. Я впаял резистор, который выпаял из шины +12 В, и впаял в разрыв шины 0 и 11 ножкой микрухи TL339. Там уже стоял один резистор. Предел токов изменился, но при подключении нагрузки напряжение на шине -12 В сильно падало при увеличении тока. Скорее всего просаживает всю линию отрицательного напряжения. Потом я заменил перепаянный резак на переменный резистор - для подбора срабатываний по току. Но получилось неважно - нечетко срабатывает. Надо будет попробовать убрать этот дополнительный резистор.

Измерение параметров дало следующие результаты:

Шина напряжения, В

Напряжение на холостом ходу, В

Напряжение на нагрузке 30 Вт, В

Ток через нагрузку 30 Вт, А

Перепайку я начал с выпрямительных диодов. Диодов два и они достаточно слабые.

Диоды я взял от старого блока. Диодные сборки S20C40C - Шоттки, рассчитанные на ток 20 А и напряжение 40 В, но ничего путного не получилось. Либо сборки такие были, но один сгорел и я просто впаял два более сильных диодов.

Влепил разрезанные радиаторы и на них диоды. Диоды стали сильно греться и накрылись:) , но даже с более сильными диодами напряжение на шине -12 В так и не пожелало опуститься до -15 В.

После перепайки двух резисторов и двух диодов можно было скрутить блок питания и включить нагрузку. Вначале использовал нагрузку в виде лампочки, а измерял напряжение и ток по отдельности.

Затем перестал париться, нашел переменный резистор из нихрома, мультиметр Ц4353 - измерял напряжение, а цифровым - ток. Получился неплохой тандем. По мере увеличения нагрузки напряжение незначительно падало, ток рос, но грузил я только до 6 А, а лампа по входу светилась в четверть накала. При достижении максимального напряжения лампа по входу засветилась на половинную мощность, а напряжение на нагрузке несколько просело.

По большому счету переделка удалась. Правда, если включаться между шинами +12 В и -12 В, то защита не работает, но в остальном все четко. Всем удачных переделок.

Однако и такая переделка долго не прожила.

Часть 3. Удачная.

Еще одной переделкой стал блок питания с микрухой 339. Я не приверженец выпаивать все, а затем стараться запустить блок, поэтому по шагам поступил так:

Проверил блок на включение и срабатывание защиты от кз на шине +12 В;

Вынул предохранитель по входу и заменил на патрон с лампой накаливания - так безопасно включать чтобы не сжечь ключи. Проверил блок на включение и кз;

Удалил резистор на 39к между 1 ногой 494 и шиной +12 В, заменил на переменный резистор 45к. Включил блок - напряжение по шине +12 В регулируется в пределе +2,7...+12,4 В, проверил на кз;

Удалил диод с шины -12 В, находится за резистором, если идти от провода. По шине -5 В слежения не было. Иногда стоит стабилитрон, суть его одна - ограничение выходного напряжения. Выпаивание микруху 7905 уводит блок в защиту. Проверил блок на включение и кз;

Резистор 2,7к от 1 ножки 494 на массу заменил на 2к, там их несколько, но именно изменение 2,7к дает возможность изменить предел выходное напряжения. Например, при помощи резистора на 2к на шине +12 В стало возможным регулировать напряжение до 20 В, соответственно увеличив 2,7к до 4к максимальное напряжение стало +8 В. Проверил блок на включение и кз;

Заменил выходные конденсаторы на шинах 12 В на максимальное 35 В, шинах 5 В на 16 В;

Заменил спаренный диод шины +12 В, был tdl020-05f c напряжение до 20 В но током 5 А, поставил sbl3040pt на 40 А, выпаивать из шины +5 В не надо - нарушится обратная связь на 494. Проверил блок;

Измерил ток через лампу накаливания по входу - при достижении потребления тока в нагрузке 3 А лампа по входу светилась ярко, но ток на нагрузке больше не рос, просаживало напряжение, ток через лампу был 0,5 А, что укладывалось в ток родного предохранителя. Убрал лампу и поставил обратно родной предохранитель на 2 А;

Перевернул вентилятор обдува чтобы воздух вдувало внутрь блока и охлаждение радиатора было эффективнее.

В результате замены двух резисторов, трех конденсаторов и диода получилось переделать компьютерный блок питания в регулируемый лабораторный с выходном током больше 10 А и напряжением 20 В. Минус в отсутствии регулирования тока, но зато осталась защита от кз. Лично мне регулировать так не надо - блок итак выдает больше 10 А.

Переходим к практической реализации. Есть блок, правда TX. Но у него есть кнопка включения, тоже удобно для лабораторного. Блок способен выдать 200 Вт с заявленным током по 12 В - 8А и 5 В - 20 А.

На блоке написано, что вскрывать нельзя и внутри нет ничего такого для любителей. Так что мы вроде как профессионалы. На блоке есть переключатель на 110/220 В. Переключатель конечно удалим за ненадобностью, а вот кнопку оставим - пусть работает.

Внутренности более чем скромные - нет входного дроселя и заряд входных кондеров идет через резистор, а не через термистор, в результате идет потеря энергия, которая нагревает резистор.

Выбрасываем провода на переключатель 110 В и все что мешает отделить плату от корпуса.

Заменяем резистор на термистор и впаиваем дроссель. Убираем входной предохранитель и впаиваем вместо него лампочку накаливания.

Проверяем работу схему - входная лампа светится на токе примерно 0,2 А. Нагрузкой является лампа 24 В 60 Вт. Светится лампа на 12 В. Все хорошо и проверка на короткое замыкание работает.

Находим резистор от 1 ноги 494 к +12 В и поднимаем ногу. Подпаиваем переменный резистор вместо него. Теперь будет регулирование напряжения на нагрузке.

Ищем резисторы от 1 ноги 494 к общему минусу. Здесь их три. Все достаточно высокоомные, я выпаял самый низкоомный резистор на 10к и запаял вместо него на 2к. Это увеличило предел регулирования до 20 В. Правда при тесте этого еще не видно, срабатывает защита от перенапряжения.

Находим диод на шине -12 В, стоит после резистора и поднимаем его ногу. Это отключит защиту от перенапряжений. Теперь все должно быть.

Теперь меняем выходной конденсатор на шине +12 В на предел 25 В. И плюс 8 А это с натяжкой для маленького выпрямительного диода, так что и этот элемент меняем на что-то более силовое. И конечно включаем и проверяем. Ток и напряжение при наличии лампы по входу может сильно не расти если нагрузка подключена. Вот если нагрузку отключить, то напряжение регулируется до +20 В.

Если все устраивает - меняем лампу на предохранитель. И даем блоку нагрузку.

Для визуальной оценки напряжения и тока я использовал цифровой индикатор с алиэкспрес. Тут еще был такой момент - напряжение на шине +12В начинало с 2,5В и это было не очень приятно. А вот на шине +5В от 0,4В. Поэтому я объединил шины при помощи переключателя. Сам индикатор имеет 5 провод на подключение: 3 на измерение напряжения и 2 на ток. Индикатор питается напряжением от 4,5В. Дежурное питание как раз составляет 5В и им питается микруха tl494.

Очень рад что удалось переделать компьютерный блок питания. Всем удачной переделки.

Со скуки решил сделать старый «фокус» из вышедшего на покой компьютерного блока питания ATX 450W, сделать автономный блок питания (БП), например для радиостанции. Блок питания запускался, 12 В. выдавал, значит с ним все не так страшно. Осталось убрать лишнее, добавить необходимое и продлить ему жизнь.

Хотел по подробней заснять весь процесс, но был один, делать и фоткать не получалось.

Характеристики БП вполне приличные, что бы за питать достаточного мощного 12 вольтового потребителя, например радиостанцию.

Вскрываем блок питания и смотрим какие у него проблемы и что там у нас лишнее.

После очистки выяснилось, что высохла емкость на выход 5В., это напряжение нам вообще не нужно, его проще удалить.

Убираем заодно и все провода, со всем разъемами, так много их теперь не нужно.

Черные провода это у нас МИНУС, Желтые + 12 В.. Ну а остальное не важно, пожалуй кроме Зеленого провода, он нам пригодится. Выпаиваем всё лишние, тут кстати очень пригодится паяльник на 150 Ватт. 🙂

Зеленый провод запускает БП из режима «Standby», его в последствии надо замкнуть на минус, туда к черным проводам. Иначе блок питания не запустится.

Ну вот плата от лишнего расчищена, Зеленый провод на месте, из толстых проводов готовим хвостики под клемники, для плюса и минуса.


Проводов нужного сечения в жгуте блока питания не было, хорошо подошли провода для аккумулятора из сгоревшего UPS.

Вот нашел клемники и заодно готовлю светодиод индикации работы БП, это всегда пригодится.

Распаиваем выходные провода и светодиод, делаем предварительный запуск, мало ли что могло случится пока ковырялся на плате.

Осталось разметить отверстия, все просверлить и собрать, навести красоту.

Свободные места в корпусе нашлись, сверло на 8 мм. и все практически готово.

Собираем протягивает, заливаем термоклеем, то что может отвинтится, укладываем провода, впереди поверка и небольшие испытания.

Холостой ход в норме, все стабильно, напряжение 12,3 В.. Можно конечно покопаться и добавить регулировку напряжения в небольшом диапазоне до 14 В.. Но все и так в пределах допустимого, а время уже к концу рабочего дня.

Подключена Моторола GM 340, стоит на передаче, ток 5 А. Для экономного варианта, из БУ, совсем без денег, получился не плохой блок питания. Который еще послужит на пользу человечеству, а не будет просто валяться или разобран за запчасти.

С таким же успехом, можно сделать выводы на напряжения 5В. и 3,3В.

Я немного увлекся гальванопластикой (про это еще расскажу), и для нее мне понадобился новый блок питания. Требования к нему примерно такие – 10А выходного тока при максимальном напряжении порядка 5В. Конечно-же, взгляд сразу упал на кучу ненужных компьютерных блоков питания.

Конечно, идея переделать компьютерный блок питания в лабораторный не нова. В интернетах я нашел несколько конструкций, но решил, что еще одна – не помешает. В процессе переделки, я сделал просто дофига ошибок, поэтому, если решитесь сделать и себе такой блок питания, учитывайте их, и у вас получится лучше!

Внимание! Несмотря на то, что складывается впечатление, что этот проект — для новичков, ничего подобного – проект довольно сложный! Имейте ввиду.

Конструкция

Мощность того блока питания, который я вытащил из-под кровати – 250Вт. Если я сделаю БП 5В/10А, то пропадает драгоценная моща! Не дело! Подымем напряжение до 25В, может сгодится, к примеру, для зарядки аккумуляторов – там нужно напряжение порядка 15В.

Для дальнейших действий нужно сначала найти схему на исходный блок. В принципе, все схемы БП известны и гуглятся. Что именно нужно гуглить – написано на плате.

Мне мою схему подкинул друг. Вот она. (Откроется в новом окне)

Да-да, нам придется лазить во всех этих кишках. В этом нам поможет даташит на TL494

Итак, первое, что нам нужно сделать – проверить, какое максимальное напряжение может выдать блок питания по шинам +12 и +5 вольт. Для этого удаляем предусмотрительно помещенную производителем перемычку обратной связи.

Резисторы R49-R51 подтянут плюсовой вход компаратора к земле. И, вуаля, у нас на выходе – максимальное напряжение.

Пытаемся стартовать блок питания. Ага, без компьютера не стартует. Дело в том, что его нужно включить, соединив вывод PS_ON с землей. PS_ON обычно подписан на плате, и он нам еще понадобится, поэтому не будем его вырезать. А вот непонятную схему на Q10, Q9 и Q8 отключим – она использует выходные напряжение и, после их вырезания не даст нашему БП запуститься. Мягкий старт у нас будет работать на резисторах R59, R60 и конденсаторе C28.

Итак, бп запустился. Появились выходные максимальные напряжения.

Внимание! Выходные напряжения – больше тех, на которые рассчитаны выходные конденсаторы, и, поэтому, конденсаторы могут взорваться. Я хотел поменять конденсаторы, поэтому мне их было не жалко, а вот глаза не поменяешь. Аккуратно!

Итак, подучилось по +12В – 24В, а по +5В – 9.6В. Похоже, запас по напряжению ровно в 2 раза. Ну и прекрасно! Ограничим выходное напряжение нашего БП на уровне 20В, а выходной ток – на уровне 10А. Таким образом, получаем максимум 200Вт мощи.

С параметрами, вроде бы, определились.

Теперь нужно сделать управляющую электронику. Жестяной корпус БП меня не удовлетворил(и, как оказалось, зря) – он так и норовит поцарапать что-то, да еще и соединен с землей (это помешает мерить ток дешевыми операционниками).

В качестве корпуса, я выбрал Z-2W, конторы Maszczyk

Я измерил излучаемый блоком питания шум – он оказался вполне небольшим, так что, вполне можно использовать пластиковый корпус.

После корпуса я сел за Corel Draw и прикинул, как должна выглядеть передняя панель:

Электроника

Я решил разбить электронику на две части – фальш-панель и управляющая электроника. Причина для такого разбиения – банально не хватило места на лицевой панели, чтобы вместить еще и управляющую электронику.

В качестве основного источника питания для своей электроники я выбрал standby источник. Было замечено, что если его хорошенько нагрузить, то он перестает пищать, поэтому идеальными оказались 7-сегментные индикаторы — и блок питания подгрузят и напряжение с током покажут.

Фальш-панель :

На ней индикаторы, потенциометры, светодиод. Для того, чтобы не тащить кучу проводов к 7-сегментникам, я использовал сдвиговые регистры 74AC164. Почему AC, а не HC ? У HC максимальный суммарный ток всех ножек – 50мА, а у AC – по 25мА на каждую ножку. Ток индикаторов я выбрал 20мА, тоесть 74HC164 точно бы не хватило по току.

Управляющая электроника – тут все слегка посложнее.

В процессе составления схемы, я конкретно налажал, за что и поплатился кучей перемычек на плате. Вам-же предоставляется исправленная схема.

Если кратко, то – U1A – диф. усилитель тока. При максимальном тока, на выходе получается 2.56В, что совпадает с опорным у АЦП контроллера.

U1B – собственно токовый компаратор – если ток превышает порог, заданный резисторами, tl494 “затыкается”

U2A – индикатор того, что БП работает в режиме ограничения тока.

U2B – компаратор напряжения.

U3A, U3B – повторители с переменников. Дело в том, что переменники относительно высокоомные, да еще и сопротивление их меняется. Это значительно усложнит компенсацию обратной связи. А вот если их привести к одному сопротивлению, то все становится значительно проще.

С контроллером все понятно – это банальная атмега8, да еще и в дипе, которая лежала в загашнике. Прошивка относительно простая, и сделана между паяниями левой лапой. Но, нем не менее, рабочая.

Контроллер работает на 8МГц от RC генератора (нужно поставить соответствующие фюзы)

По хорошему, измерение тока нужно перенести на “высокую сторону”, тогда можно будет мереть напряжение непосредственно на нагрузке. В этой схеме при больших токах в измеренном напряжении будет ошибка до 200мВ. Я слажал и каюсь. Надеюсь, вы не повторите моих ошибок.

Переделка выходной части

Выбрасываем все лишнее. Схема получается такой (кликабельно):

Синфазный дроссель я немного переделал – соединил последовательно обмотку которая для 12В и две обмотки для 5в, в итоге получилось около 100мкГн, что дофига. Еще я заменил конденсатор тремя включенными параллельно 1000мкФ/25В

После модификации, выход выглядит так:

Настройка

Запускаем. Офигиваем от количества шума!

300мВ! Пачки, похоже на возбуждение обратной связи. Тормозим ОС до предела, пачки не исчезают. Значит, дело не в ОС

Долго тыкавшись, я нашел, что причина такого шума – провод! О_о Простой двужильный двухметровый провод! Если подключить осциллограф до него, или включить конденсатор прямо на щуп осциллографа, пульсации уменьшаются до 20мВ! Это явление я толком не могу объяснить. Может, кто-то из вас, поделится? Теперь, понятно что делать – в питающейся схеме должен быть конденсатор, и конденсатор нужно повесить непосредственно на клеммы БП.

Кстати, насчет Y – конденсаторов. Китайцы сэкономили на них и не поставили. Итак, выходное напряжение без Y-конденсаторов

А теперь – с Y конденсатором:

Лучше? Несомненно! Более того, после установки Y – конденсаторов сразу-же перестал глючить измеритель тока!

Еще я поставил X2 – конденсатор, чтобы хоть как-то поменьше хлама в сети было. К сожалению, похожего синфазного дросселя у меня нет, но как только найду – сразу поставлю.

Обратная связь.

Про нее я написал , читайте

Охлаждение

Вот тут пришлось повозиться! После нескольких секунд под полной нагрузкой вопрос о необходимости активного охлаждения был снят. Больше всех грелась выходная диодная сборка.

В сборке стоят обычные диоды, я думал заменить их диодами Шоттки. Но обратное напряжение на этих диодах оказалось порядка 100 вольт, а как известно, высоковольтные диоды шоттки не намного лучше обычных диодов.

Поэтому, пришлось прикрутить кучу дополнительных радиаторов (сколько влезло) и организовать активное охлаждение.

Откуда брать питание для вентилятора? Вот и я долго думал, но таки придумал. tl494 питается от источника напряжением 25В. Берем его (с перемычки J3 на схеме) и понижаем стабилизатором 7812.

Для продуваемости пришлось вырезать крышку под 120мм вентилятор, и прицепить соответствующую решетку, а сам вентилятор поставить на 80мм. Единственное место, где это можно было сделать – это верхняя крышка, а поэтому конструкция получилась очень плохая – с верху может упасть какая-то металлическая хрень и замкнуть внутренние цепи блока питания. Ставлю себе 2 балла. Не стоило уходить от корпуса блока питания! Не повторяйте моих ошибок!

Вентилятор никак не крепится. Его просто прижимает верхняя крышка. Так вот хорошо с размерами я попал.

Результаты

Итог. Итак, этот блок питания работает уже неделю, и можно сказать, что он довольно надежен. К моему удивлению, он очень слабо излучает, и это хорошо!

Я попытался описать подводные камни, на которые сам нарвался. Надеюсь, вы не повторите их! Удачи!

За основу был взят БП CODEGEN - 300X (типа 300Вт, ну Вы поняли китайских 300). Мозгом БП служит ШИМ-контроллер КА7500 (TL494...). Только такие мне приходилось переделывать. Управлять ШИМкой будет PIC16F876A, он же и для контроля и установки выходного напряжения и тока, отображение информации на LCD WH1602(...), регулировка осуществляется кнопками.
Программу помог сделать один хороший человек (IURY, сайт "Кот", который радио), за что ему большое спасибо!!! В архиве схема, плата, программа для контроллера.

Берем рабочий БП (если не рабочий, то надо восстановить до рабочего состояния).
Ориентировочно определяемся, где у нас что будет располагаться. Выбираем место под LCD, кнопки, клеммы (гнезда), индикатор включения...
Определились. Делаем разметку для "окна" ЛСД. Вырезаем (я резал маленькой болгаркой 115мм), может кто-то дремелем, кто-то рассверливанием отверстий, а потом подгонка напильником. В общем кому как удобнее и доступнее. Должно получиться что-то похоже на это.

Продумываем как будем крепить дисплей. Можно сделать несколькими способами:
а) соединить с платой управления разъёмами;
б) сделать через фальшпанель;
в) или...
Или... припаять непосредственно 4 (3) винтика М2,5 к корпусу. Почему М2,5, а н М3,0? В ЛСД отверстия 2,5мм в диаметре для крепления.
Я припаял 3 винтика, потому что при пайке четвертого, отпаивается перемычка (на фото видно). Потом припаиваешь перемычку - отпадает винтик. Просто сильно близкое расстояние. Не стал заморачиваться - оставил 3 шт.

Пайка выполнена ортофосфорной кислотой. После пайки всё необходимо хорошо промыть водой с мылом.
Примеряем дисплей.

Изучаем схему, а именно все относительно TL494 (KA7500). Все что касается ног 1, 2, 3, 4, 13, 14, 15, 16. Всю обвязку возле этих выводов удаляем (на основной плате БП), и устанавливаем детали, согласно схемы.

Удаляем на основной плате БП всё лишнее. Все детали касательно +5, -5, -12, PG, PS - ON. Оставляем только всё, что касается +12 V и дежурного питания +5V SB. Желательно найти схему по своему БП, чтобы не удалить чего лишнего. В цепи питания +12 вольт - удаляем родные электролиты и ставим вместо них, аналогичный по ёмкости, но на рабочее напряжение 35-50 вольт.
Должно получиться что-то похоже на это.

Для увеличения, жмите на схему

Посмотрев на характеристики имеющегося блока питания (наклейка на корпусе) - по 12В выходной ток должен быть 13А. Ого неплохо вроде!!! Смотрим на плату, что у нас образовывает 12В, 13А??? Ха два диода FR302 (по даташиту 3А!). Ну пусть максимальный ток 6А. Нет, такое нас не устраивает, надо заменить на что-нибудь по мощнее, да еще и с запасом, поэтому ставим 40CPQ100 - 40А, Uобр=100В.

На радиаторе были какие-то изолирующие прокладки, прорезиненная ткань (что-то похожее). Отодрал, отмыл. Поставил нашу отечественную слюду.
Винты, поставил подлиннее. Под один сзади зажал еще слюду. Блок решил дополнить индикатором перегрева теплоотвода на МП42. Германиевый транзистор здесь используется в качестве датчика температуры

Схема индикатора перегрева теплоотвода собрана на четырёх транзисторах. В качестве транзистора стабилизатора применён КТ815, КТ817, а в качестве индикатора - двухцветный светодиод.

Печатную плату не рисовал. Думаю, что особой сложности при сборке этого узла возникнуть не должно. Как узел собран, видно на фото ниже.

Делаем плату управления. ВНИМАНИЕ! Перед подключением своего LCD изучите даташит на него!! Особенно выводы 1 и 2!

Соединяем все согласно схеме. Устанавливаем плату в БП. Также надо изолировать основную плату от корпуса. Сделал я всё это через пластиковые шайбочки.

Наладка схемы.

1.Все наладки блока питания проводить только через лампу накаливания 60 - 150 Вт, включенную в разрыв сетевого кабеля.
2.Корпус БП изолировать от GND, а цепь, которая образовывалась через корпус, соединить проводками.
3.Iizm (U15) - выставляется выходной ток (правильность показаний индикатора) по образцовому А - метру.
Uizm (U14) - выставляется выходное напряжение (правильность показаний индикатора), по образцовому В - метру.
Uset_max (U16) - выставляется МАХ выходное напряжение

Максимальный выходной ток данного блока питания составляет 5 ампер (вернее 4,96А), ограничен прошивкой.
Максимальное выходное напряжение для данного блока питания, не желательно выставлять более 20-22 вольт, так как в этом случае увеличивается вероятность пробоя силовых транзисторов из-за нехватки предела ШИМ-регулирования микросхемой TL494.
Для увеличения выходного напряжения более 22 вольт, необходима перемотка вторичной обмотки трансформатора.

Пробный запуск прошёл успешно. Слева двухцветный индикатор перегрева теплоотвода (холодный радиатор - цвет LED зеленый, теплый - оранжевый, горячий - красный). Справа - индикатор включения БП.

Установил выключатель. Основа - стеклотекстолит, обклеен самоклейкой "оракл".

Финал. То, что получилось в домашних условиях.

Сегодня стоимость лабораторного блока питания составляет примерно 10 тыс. рублей. Но, оказывается, есть вариант переделки компьютерного блока питания в лабораторный. Всего за тысячу рублей вы получаете защиту от короткого замыкания, охлаждение, защиту от перегрузки и несколько линий напряжения: 3В, 5В и 12В. Однако мы будем модифицировать его, чтобы получить диапазон от 1,5 до 24В, который идеально подойдет для большинства электроники.

Я считаю, что этот способ переделки компьютерного блока питания на 24 вольта лучший, учитывая, что я смог воплотить его в реальность своими руками всего в 14 лет.

ПРЕДУПРЕЖДЕНИЕ: Здесь ведется работа с током, будьте осторожны и соблюдайте меры безопасности!

Вам понадобится:

  • рулетка
  • отвертка
  • Компьютерный блок питания (рекомендую 250 Вт +) и кабель для него
  • Проволочные защелки
  • Паяльник
  • Резистор на 10Ом 10Вт или больше (некоторые новые блоки питания не работают должным образом без нагрузки, поэтому резистор должен её обеспечить)

Необязательно:

  • переключатель
  • 2 светодиода любого цвета (красный и зеленый подойдут лучше всего)
  • Если вы используете светодиоды, понадобится 1 или 2 резистора на 330 Ом,
  • Термоусадка
  • Внешний корпус (можно поместить всё в оригинальный корпус, а можно взять другой).

В зависимости от того, какой метод для регулируемого блока питания из БП компьютера вы используете (подробнее об этом позже):

  • Клеммные колодки
  • Дрель
  • Резистор 120 Ом
  • Переменный резистор 5 кОм
  • Разъемы
  • Зажимы «крокодил»

Шаг 1: Сбор и подготовка блока питания



Предупреждение: ПЕРЕД ТЕМ, КАК НАЧАТЬ, УБЕДИТЕСЬ, ЧТО БЛОК ПИТАНИЯ НЕ ПОДКЛЮЧЕН

Конденсаторы могут ударить током, что довольно больно. Дайте блоку питания полежать в течение нескольких дней, чтобы он разрядился, или подключите резистор на 10 Ом к красному и черному проводу.

Если вы слышите жужжание при включении питания, это означает, что где-то происходит короткое замыкание или другая серьезная проблема. Если вы слышите жужжание (не от паяльника) во время пайки, это означает, что блок питания подключен. Помните, что если блок, который подключен к питанию, отключить кнопкой, в нем все еще останется ток.

Хорошо, давайте вынем блок питания из компьютера. Обычно он крепится на 4 винтах к задней панели корпуса. Выньте провода из отверстия, затем сгруппируйте их по цветам и отрежьте концы.

Кстати, вы только что аннулировали свою гарантию.

Шаг 2: Делаем проводку




Теперь приступим к сложной части, где нужно добавить светодиоды, переключатели и другие подобные детали. Мы имеем много проводов каждого типа, поэтому я рекомендую использовать 2-4 провода. Некоторые люди перебирают все внутри коробки, а я сделал всё снаружи. Это зависит от того, какой метод вы используете на следующем шаге.

Если вы хотите добавить индикатор ожидания или индикатор включения питания, вам понадобится светодиод (рекомендую красный, но не обязательно) и резистор на 330 Ом. Припаяйте черный провод к одному концу резистора, а короткий конец светодиода — к другому. Резистор уменьшит напряжение, чтобы не повредить светодиод. Перед пайкой, наденьте небольшой кусок термоусадки, чтобы защитить контакты от короткого замыкания. Припаяйте фиолетовый провод к более длинной ноге, и когда вы подадите питание (не включая блок), светодиод должен загореться.

Для включенного блока питания вы также можете установить другой светодиод (рекомендую зеленый). Некоторые говорят, что нужно использовать серый провод для питания светодиода, но тогда нужен еще один резистор на 330 Ом. Я просто подключил его к оранжевому проводу 3,3 В.

Если вы используете метод с серым проводом:
Прежде чем припаять его, наденьте еще один кусочек термоусадки, чтобы предотвратить КЗ. Припаяйте серый провод к одному концу резистора, а другой конец резистора — к более длинной ножке светодиода. Черный провод припаяйте к короткой ножке.

При использовании оранжевого провода 3.3В:
Прежде чем припаять его, наденьте еще один кусочек термоусадки, чтобы предотвратить КЗ. Припаяйте оранжевый провод к более длинной ножке светодиода, а черный провод — к более короткой ножке.

Теперь к переключателю: если на задней стенке вашего блока питания уже есть переключатель, этот пункт вам не сильно пригодится. Подключите зеленый провод к одному контакту на переключателе, а черный — к другому. Если вы не хотите использовать переключатель, просто соедините зеленый и черный провода.

Вы также можете использовать предохранитель на 1А. Всё, что нужно сделать, это обрезать черные провода примерно в середине, и соединить их с предохранителем в держателе.

Некоторым блокам питания нужна нагрузка для правильной работы. Для обеспечения этой нагрузки припаяйте красный провод к одному концу резистора 10 Ом\10 Вт и черный провод к другому. Таким образом блок будет думать, что он что-то делает.

Если вы ничего не поняли, загляните в схему, которую я приложил. В ней показан способ подключения проводов. Об этом я расскажу в следующем шаге. Там изображен способ с серым проводом на светодиод (но вы можете использовать оранжевый, как написано выше), а также показывает проводку для высокоомного резистора.

Шаг 3: Пускаем ток!



В учебных пособиях, которые я прочитал, существует множество различных способов подключения разъемов для подключения ваших устройств к питанию. Мы начнем с самого лучшего и дойдем до худшего.

Некоторые учебные пособия расскажут вам, как собрать все детали внутри корпуса, но это опасно и приведет к чрезмерному нагреву и поломкам. Я рекомендую использовать внешний монтаж.

Добавление переменного резистора

Я лично считаю, что это лучший метод, так как он может обеспечить любое напряжение от 1,5 до 24 В. Причина того, что он на 22В, а не 12В, потому что он использует синий провод, который имеет напряжение -12 В, а не обычную землю (черный провод).

Нам понадобится:

  • Регулятор напряжения LM317 или LM338K
  • Конденсаторы 100nF (керамика или тантал)
  • Конденсаторы 1uF Электролитические
  • Силовой диод 1N4001 или 1N4002
  • Резистор 120 Ом
  • Переменный резистор 5 кОм

Сначала постройте схему с основного изображения и соедините ваши линии +12 и -12 В. Затем просверлите отверстия в блоке питания или в внешнем корпусе, чтобы установить переменный резистор. Все остальные детали должны находиться внутри. Теперь я предлагаю добавить две клеммных колодки, чтобы вы могли подключать устройства напрямую. Также можно подключить к ним «крокодилы». Когда вы поворачиваете переменный резистор, напряжение должно находиться в диапазоне от 1,5 до 24 В.

ПРИМЕЧАНИЕ. На главном изображении есть опечатка, которую следует учесть: + 24В вместо 22В. Если у вас есть старый вольтметр, вы можете подключить его в цепь, чтобы отслеживать выходящее напряжение.

Разъемы

Теперь нужно установить разъемы для подключения оборудования. Просверлите для них отверстия (обязательно оберните печатную плату в пластик, так как металлические осколки могут закоротить ее), а затем проверьте, подходят ли они по размеру, вставив разъемы и затянув болт. Выберите, какое напряжение должно идти на каждый разъем и сколько разъемов нужно вставить. Обозначения проводов по цветам:

  • Красный: + 5В
  • Желтый: + 12В
  • Оранжевый: + 3,3В
  • Черный: Земля
  • Белый: -5В

Выше приведено изображение с использованием метода с разъемами.

Крокодиловые зажимы

Если у вас не так много опыта или у вас нет вышеуказанных деталей, и по какой-то причине вы не можете их купить, вы можете просто подключить любые линии напряжения, которые вы хотите к крокодиловым зажимам. Если вы выбрали этот вариант, я рекомендую использовать изоляцию, чтобы предотвратить КЗ.

  1. Не бойтесь добавлять ингредиенты в коробку: светодиоды, наклейки и т.д.
  2. Убедитесь, что вы используете блок питания ATX. Если это AT или более старый источник питания, у него, скорее всего, будет другая цветовая схема для проводов. Если у вас нет данных о проводке, даже не начинайте никаких работ, иначе вы просто сломаете свой блок.
  3. Если светодиод на передней панели не горит, значит ножки подключены неправильно. Просто поменяйте провода местами и он должен загореться.
  4. Некоторые современные блоки питания имеют провод «Сигнал обратной связи стабилизатора», который должен быть подключен к источнику питания для работы блока. Если провод серый, подключите его к оранжевому проводу, если он розовый, подключите его к красному проводу.
  5. Силовой резистор с высокой мощностью может довольно сильно нагреваться; вы можете использовать радиатор, чтобы охладить его, но убедитесь, что он не создает КЗ.
  6. Если вы решили монтировать детали внутрь корпуса, вентилятор можно установить снаружи, чтобы освободить немного места.
  7. Вентилятор может шумно работать, ведь он питается от 12В. Так как это не компьютер, который сильно нагревается, можно обрезать красный провод вентилятора и подключить оранжевый 3,3 В. Следите за температурой после этого. Если она слишком большая, подключите обратно красный провод.

Поздравляю! Вы успешно сделали ваш блок питания.